Burn severity and fire history in the northwestern Canadian boreal forestdrivers and
ecological outcomes

by

Ellen Whitman

A thesis submitted in partial fulfillmemtf the requirements for the degree of

Doctor of Philosophy
in

Forest Biology and Management

Department of Renewable Resources
University of Alberta

© Ellen Whitman 2019



Abstract

Wildfire is the dominant starcenewing disturbance imé norhwestern Canadian boreal forest.
Firesburn extensive areas in Canadisturbingan average of.96 Mha yI*, primarily in the
boreal zoneFires generally occur every ~30> 200years in this regiorduein partto alack of
fuel that allows young stands to resist reburnBgreal understory plants and trees are adapted
to standrenewing wildfire through mechanisms such as serotiny, sedthigaand resprouting
from roots and rhizomes of tdglled individuals.Such @aptations confer resilien¢e boweal
forests andpostfire vegetation communities geradly resemble the préire onesfollowing a

stand selreplacement trajectory.

Recently, the area burned, average fire size, and fire season length in northwestern Canada have
increasedSevere fire weather has enabled reburning of young forests at veryngaorals

( s o me t 0 years bet@een firesyuch changes in fire regina@pear to be driven by
anthropogenic climate change and increasingly severe fire wekatindgrermore,nicreasing

moisture stress is implicated simultaneousncrea®s infire activity, and worsening conditions

for postfire establishment of treeShifts in fire regime characteristics, such as burn severity and
fire-free interval may lead to changes in vegetation composition following fire, thwarting stand

selfreplacement expectations.

The 2014 and 2015 fire seasons in the Northwest Territories (NddMNarthern Alberta (AB)
were severewith fires burning approximately 4 Mha, including instances of sheetval
reburning.Inspired by these two fire yeais,this dissertatioh soughtto understand the drivers
of burn severity and the ecological cotnes of burn severifpiomass lossand fire intervals,

andhowthey interact with climate in this firadapted ecosysterSpecifically, my objectives



wereto: 1. characterize drivers and landscape patterns of burn severity, 2. describe the ecological
outcomes of burn severity and fire history, and 3. exantaeffects of postire moisture stress
and fire regimeon postfire vegetation communitie¥heseresearch objectives are

contextualized in a methodological and ecological overue@hapterl.

In Chapter 2 of this thesis | useeimotely sensed multispectral imagery and field observatibns
burn severityo maplandscape patterns of busaverity in six large wildfired-ireswere
dominated by moderatand highseverity patches. These patchesenextensive, adjacent to
similar patches, and had large core arEsdd measurements allowed me to demonstrate that
burn severity was primarily a product of giiee vegetation structure (fuels) and hydrology
(uplands and wetlandg)roviding a mechanistoy which the severity of disturbance
experienced is limited by ¢hvegetation communities themselv&amilarly, field measurements
of postfire vegetation communities and shifts in tree species commogdihapter 3)vere
largelyexplained byprefire forest structure, fdyology, and climatenormals Thelandscape of
theNWT andAB was altered by the extensive area burned in 2014 and ROdByer, burn
severityis highly variable. Podire ecological outcomes from these years are likely to be

variable,as well.

Although both siteand standevel controls on burn severity and pdis¢ vegetatiorconfer
resilience, where firactivity and severity increaskere is a possibility for forest chande.
found evidence of podire shifts in tree species compositi@hapter3). Black (Picea mariana
and white P. glaucg spruce dominancgeclinedin uplandgollowing fire, whereashifts in
dominance ojack pine Pinus banksianawerevariable and trenbling aspenFopulus
tremuloide$ dominancegenerallyincreased following fireWhere t©iangesn tree species

compositionand densityoccurred, theyvere mediated by burn severity and fire frequency.



Shortening ofire-free intervalglue to drought is liély to acceleratelimatedrivenshiftsfrom
coniferdominated boreal forests bpen woodlands and grasslarfelsred stes thatreburned at
short firefreeintervalshad significantly lower podire recruitmentf trees than longnterval

pair membersdue to decreased establishment of conf€rspter 4) Thesedifferenceswere
persistent andccurredn both uplands and wetlands. Increasing temperatures and aridity are
likely to increase fire activityand toreinforce the changes to forests sad byshifts in fire
regimes. Bg-fire moisture stress inoth short and longinterval sitesnteracted with burn
severity, further reducinggeeseedling densitylhis dissertation suggesthat increasing wildfire
activity and severity may alter the compmsi and structure of northwestern Canadian boreal

forests, acceleratingxpectedecosystem changes as northern climates warm and dry.
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Introduction

1.1 Background

The circumpolar boreal forest makes up approxim&g@l9yoof all forested land and contains

some oftthe most extensive unmanaged forest area in thelw@rle third ofthe&r t héds bor ea
forest is in North America, with 552 Mha (88 of North American boreal forests) occurring in
CanadgBrandtet al, 2013; Gauthieet al, 2015) Boreal forests are globally important, as they

cover a substantial propat ofthe B r t h 6 s s u re§sentiakecosyptenoserviceseand

habitats, and contain as much a€9/80f all global carbon stock¥hey are exploitetty humans

for natural resourcesupporting rural and urban economasdare home to communities

ranging in size from settlements tdies (Gauthier et al., 2015)

At present, North American boreal forests are dominated by coniferous trees, espemally
spp., due to the long cold winters and short warm summers in this northern biome. Broadleaf
trees are not uncommon, and often fanmed stands with coniferm generally smaller pure
broadleaf stand@randt et al., 2013; Ecological Stratification Working Group, 1986%ome

parts of the boreal zone extensive gleatning wetland (peatland) complexes cover vast areas,
asmuchas5% of t he |(Bamacéies al. 2014; Trompson et,a2016) Boreal

forests have expanded northward sineerttost recent glacial maximum. As glaciers retreated
from North Americawhite (P. glaucg and black IP. mariang spruce trees established first
alongside paper birclBétula papyrifery, with Jack PineRinus banksiangand trembling aspen
(Populustremuloide$ establishing later. By approximately 7000 years BP boreal vegetation
formed an extensive band from AlagkaNewfoundland, which has persisted in some form since
that time(Brandt et al., 2013; Dyke, 2005)

Wildfires are the dominant stamdnewing disturbance in North American boreal forests,
generally affecting a larger area than either defoliating insadtéosest disease, or harvesting
(Brandt et al., 2013; Whitet al, 2017) On average, wildfires affect 1.92 Mha of the Canadian
landscape annually, with the majority of such events occurring in boreal f(esisset al,

2018) Wildfires in boreal foests are substantialtiriven by bothwveather(day-to-day and

minuteto-minute variations in atmospheric conditions) and lofigan climate(variability in



atmospheriprocesses and conditions over timescales longer than a fire sBadanet al.,
2015;Flannigan & Wotton, 2001 Naturallyoccurring lighhing ignitions, and the flammability
of vegetative fueland biomass ar@ result ofveathermediated fuel moisture. Furthermore,
length of the fire season (the annual period during which wildfireskag to occur) is
determined by weath€Flanniganet al, 2000; Van Wagner, 1987; Weber & Flannigan, 1997)

Boreal forests cevolved with wildfire Their establishmemwas concurrentith increases in

fire activity, as both area burned ahe range®sf tree speciesesponded to climatgarcaillet et
al., 2001; Hu et al., 2006; Larsen, 1996)ye regimegcharacteristics and landscape patterns of
fire; Krebset al, 2010)vary substantially across the Canadian boreal zone. In general, however,
few (32 % of all ignitions) large fires©200ha) are responsible for the significant majority of
the area burned (96%) in CanaddHanes et al., 2018lightningignitesapproximately half of

all fires, but causefires that burn large areé30 % of area brned; Stocks et al., 200Zires in

the boreal forest are often hightensity crown fires, which burn large areeeluding wetlands,
and kill most overstory trees. Although crown fires are considered characteristic of the North
American boreal biomeround or surface fires, and intermittent crown fires also regularly
occur, depending on fue{stand structure and composition, aanbustiblebiomass)nd fire
weather(Forestry Canada Fire Danger Group, 1992; Johnson, 1B@23 recur in thisagionat
intervals ranging from-30 to> 1000years depending on climate, fuels, and weai{Boulanger

et al, 2012) Young forests resist reburning for upwards of 30 years following severe wildfire,
due to lack of fue{Héonet al, 2014; Parket al, 2018;Thompson et al., 2017)

Resilience is the ability to recover structure and function following disturbance (Holling, 1973).

Boreal forests are resilient to fire, as tloaytolerate severe wildfire without permanently

shifting to alternative statesuch a nonforest Through adaptatiorsnd characteristics of

speciessuch as serotiny (information legacies), forests are capableofseff| ace ment or
regenerationdé i n the yea.rTlisprotessaldoidependstbg f ol | ow
physcal availabilityof in-situ or nearbypropagule source¢material legaciesBuma et al., 2013;

Johnstone et al., 201@ostfire vegetation communities often resemble those that existed prior

to fire (llisson & Chen, 2000 Jack pine and black spruce kaserotinous and sefserotinous
conesyespectivelywhich provide an aerial seedbank for pfnst re-establishment adeedlings

if mature trees are heatadd possibly killedy fire. Trembling aspen, balsam poplBopulus



balsamifera, and paper bittare capable of vegetative regeneration, and often vigorously
resprout(sucker)following fire (Greene et al., 1999)nderstory plants are also adapted to fire,
and may resprout (e.g., willowSalixspp.), vigorously seeth on disturbed surfaces (e.g.,
fireweed,Chamerionangustifoliun), or reestablish from persistent soil seedbafeg.,

Bi cknel | 6GeragunrbigkndlljifFranklin, 2018 USDA Forest Service Rocky
Mountain Research Station Fire Scienes Laboratory, 2@1&)tsthat requirdive seedsources,
such as white sprucmay experiencéocal extinctiondollowing fire, and reestablishment may
occur much more slowly, taking as long as 40 y@asson & Chen, 2009; Petees al, 2006)
Unburned islands, or residuals, resultingrirmixed fire severity (partial mortality) are another
material legacy conferring resilience to forests for such species (Gaéipahu1997; Meddens
etal., 2018

Despite adaptatiorts fire in boreal plantghere is variability in podire vegetatio

establishment and community composition within and amongst boreal forest wildfires. Variable
fire intensity (energy emitted) results in variable fire effeBtegn severity is theabove and
belowground biomass loss from fir@nd is often represented vidiverse field and remotely
sensed metricggynonymous with fire severity{eeley, 2009)Burn severity influences the pest
fire composition olvegetatiorcommunities by altering seed sources or availability of seed and
bud bankgArseneault, 2001; Brow& Johnstone, 2012; Splawinski, Greene, et al., 2W#ng

& Kemball, 2005; Whittle et al.1997) affecting the availability of substrates for seedling
germination(Charron & Greene, 2002; Johnstone & Kasischke, 2005; Lefade2000) and
killing live plants.Burnseverity can have immediafe.g.,Bernhardtet al, 2011)and lasting
(e.g.,Gibson et al., 2016; Johnstone & Chapin Ill, 2006a; Patrad, 2013)effects on species

composition and richnegs.g,Pinno & Errington, 2016f boreal forest plant communities

1.2 Climate change

Climate change has already caused shifts iplduat species composition of boreal forests,
favouringfastgr owi ng oOearly successional 6 tree speci
to the detrinent of latesuccessional speci€se., Piceaspp) at rates of 0.13% (broadleafs) to

0.32% (conifers) increase in relative abundance per $emrke & Chen, 20H). Aboveground

biomass in western forestssaeclined in recent years due to tree mortgfggarle & Chen,



201, 2018) and increases in moisture stress and severe drought have been implicated in
extensive dieoffs and declines in growth of both coniferous and broadleaf spgtigg et al.
2017; Michaeliaret al, 2011)

In addition to direteffects of anthropogenic climate change on forest composition and structure
(e.g., through tree mortalityglimate change has also caused fire activity in western North
America to rise, as indicated kgrger fire sizes, greater annual area burned, and lengthening fire
seasongAbatzoglou & Williams, 2016; Hanes et al., 2018; Jatial, 2017) Projections of

future climate change suggest that fire weather se\®iang et al., 2015¥ire intensity(and
thereforeburnseverity; Wottoret al, 2017) area burne@oulangeret al, 2014; Wanget al.,

2017) and fire frequencyBergeroret al, 2004)will continue to increase in many areas as

climates in the North American boreal forest become warmemane arid(Wanget al, 2014)

Although boreal forests are resilient due to adaptations tarfi@gskeystone tree species,
shortening intervals between fires mragultin the loss of information and material legaaesl
leading to vegetation stathangegJohnstone et al., 2016; Turetsky et al., 20$éyvere fire
weather has enabled shaorterval reburning of young boreal forests with low propagule loads,
leading to shifts in the species composition, stand stru¢iahestone, 2006; Johnstone &
Chapin Ill, 2006b)andwhat amounts teegetation statehangesn boreal forest$Brown &
Johnstone, 2012; Hart et al., 201B)rthermore, droughts and moisture stress are implicated in
both the occurrence shortinterval reburningParks et al., 20)&nd in lower stem densities
and recruitment failures in pefite tree cohortgHarveyet al, 2016; StevenrRumann et al.,

2018) Thus, here ispotential forinteractions amongslirect (moisture stress) and indirect (fire

regime changes) effects dfmate changen boreal forest regeneration.

1.3 Research justification

Climate change is projected to increase temperatures, aridity, and fire actvityma d a 6 s
western boreal fore¢Boulanger et al., 2014; Wang et al., 2015; Wang et al., 2pbtgntidly
leading to relatively rapid and extensive conversion of boreal forests to grasslands and open
woodlandgStralberg et al., 2018Llimate change effects on fire regimes and boreal foegsts
alreadyapparent in northwestern North Ameridde 2014 fie season in the Northwest
Territories (NWT) and the 2015 fire season in NAA Alberta (AB) were of significant

interest. Together, these two years were responsible for more thhaa dfldrea burned in NWT



and AB, which is nearly four times ti@&anadiamationalaverage for a single yef@Canadian
Interagency Forest Fire Centre, 201Ryrthermore, during these two fire years there were
notable events of shetterval reburningFor this reason, | chose to focus my research on
northernAB andthesouthen NWT (Fig. 1.1) In this dissertation | seek to understand the
drivers ofburnseverity and the ecological outcomeshafrnseverity and fire intervals, and to

learn how they interact with climate in this fiaelapted ecosystem.
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Figure0.1 The extent of the North American boreal for@tandt, 2009)and the study areexamined inhis
research{black rectangle)Lakes and rivers are shown in blue, and thelareal landmass is shown in
beige.

1.3.1 Knowledge gapand research questions

The applicability of multispectral remote sensing indices to describe spatial burn seasyst
to beconsistentlydemonstrateth the northwestern boreal foreResearchers have found
relationships of varyingtrengtls between field and remotely sensed burn severity, a@iress
fire years, and regior(&rench et al., 2008¥hose studies that have been conducted sty
considered one field measure of burn severity, the composite burn indeXé¢@BBoucheret
al.,2016; Hall et al., 2008; Sovered al, 2010) Due to the variability in burn severity and-on
the-groundfire effectsbetween regions, fires, and fire years, it has been suggesteegdioail
models of burn severity that relate ecol@dic meaningful severity metricre necessary to
adequately characterize burn severity from remotely sensed spatigfeteh et al., 2008; Hall
et al., 2008; Morgan et al., 2014t the time of this researcimodels relating field observations



of multiple burn severity metrics to remotely sensed burn sevieaygnot been developdar

this study arealimiting the conclusions that may be drawn from reaaitgilable current and

historic multispectral imageryandscape patterns of burn severity hagen extensively
documented outside of Canada, and especially outside of the boreal zone, however, despite the
importance of wildfire to this ecosystem spatial analyses of burn severity in this region are

limited.

Althoughit is generally known that burseverity is related to fire intensitwhich is partially
explained by vegetation structure and fuedsandlevel drivers of burn severity imorthwestern
Canadiarboreal forestsire largely undescribed beyond broad vegetation classes and canopy
closure(e.g., Fersteet al, 2016;Hall et al., 2008; SaMiguel et al, 2016) Detailed information
about the togown effects of fire weathgand bottorrup effects of stand structure and site
moisture on burn severity would improve our ability to predict and explain burn severitg, and

manage boreal forests.

At present, knowledge gaps exist about the applicability and relationship of resetegd burn
severity metrics to field observations of burn severity in this region. Furthermore]estahd
drivers of burn severity are unknown in the northwestern Canadian boreal forest. Building
relationships between field observations of burn seugriefire forest characteristics, and
remotely sensed severity metrics would provide new burn severity data, allowing broader
characterizations of landscape patterns of burn severity relative-tiogpvegetation controld.
developedhefollowing resarch questions aboctaracterizindurn severity in northwestern
Canadian boreal forestts address these knowledge gagmssideredn Chapter 2 of this
dissertation:

1. How do different overstory, understory, and stéeckl field metrics of burn severity
correspond to remotely sensed multispectral burn severity indices?
2. What is the landscape pattern of burn severity in an extreme fire season, and what are the

drivers of burn severity?

Faced with a changing climate and fire regime, gaiaimgnhancedndeastandng of boreal
forest resiliencand limits to stand seleplacement is importanilthough several studies about

the ecological outcomes of fifeee intervals and burn severity have been conducted in the



northwestern boreal fore@.g., Brown & Janstone, 2012; Hart et al., 2018; Johnstone, 2006;
Johnstone & Chapin Ill, 2006b; Shenetyal, 2011) few of these have examined the boreal
plains (but see Pinno & Errington, 2016; Pinaebal, 2013) aclimatically dryregion with low
relief (and theréore possibly low potential for refugia from climate change; Dobrowski & Parks,
2016)and a substantial peatland component, that is regularly disturbed by largéHedsoreal
plain isprojected to experience substantial vegetation change in the heai(8iralberg et al.,
2018) At present it is urlearwhether and by what mechanisstsfts in fire regime# this
regionmayoverwhelm topoedaphic controls on vegetation commur{iesfin et al, 2015)

and how responses to burn severity andffiee interval may vary between upland and wetland
environmentsHow such changes may interact with futgtenates in this regions also

uncertain, despite evidence that pfast moisture stress may lead &generation failure or
delayed regeneratian other ecosystem$larvey et al., 2016; Stevelumann et al., 2018)

The relative strength of fire effects and topoedaphic controls offiposegetation communities
within the study area are not yet cleattycumented. Although pofite vegetation shifts within
the northwestern boreal fordsive been observeid is important to elucidate the divers of such
changes, their ecological outcomaad how they may interact with ongoing climate chahge
develoged the following research questions about the effects of burn severity ahidting on
postfire ecological outcomes northwestern Canadian boreal forests to address these

knowledge gaps:

1. What is the relative importance of fire, gfiee conditionsand climate and posfire soils
to postfire vegetation communitieg€hapter 3)

2. How do posffire shifts in tree species composition occur in an ecosystem wsttuin
propagule sourcegZhapter 3)

3. How ar vegetation communities affecteddhortintervalreburning, andredifferences
caused by short and long fifieee intervalgersistent and detectable in both uplands and
wetlands? (Chapter 4)

4. Does posfire moisture stress influence forest structure and composiiicim&pter 4)

The main body of this dissertation is structured as three individual papers (Chdp#gr3 Rese
chapters all stand alone, and can be read individually without requiring supporting details from

other chapters of this docume@hapter 2s formatted inthe style of the journdtcospherand



Chapter 3s formatted in the style of the journiabrests Chapter 4 is unpublished at this time.
This research builds on existing knowleddge¢heimportance of burn severity and fire history to
postfire ecologicaloutcomes to answer the questions abawueto refine our understanding of
how fire regimes interact with peBte climate. The major findingsom this research are

summarized and synthesized in Chapter 5 of this dissertation.
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2 Variability and drivers bburn severity in the northwestern Canadian

boreal forest

Ellen Whitman MarcZAndré Parisia, Dan K. ThompsopRonald J. HallRobert S. Skakyn
Mike D. Flannigan

2.1 Abstract

Burn severity (ecological impacts of fire on vegetation and soils) influencefingostand

structure and species composition. The spatial pattern of burn severity may compound the
ecological impacts of fire through distances to seed sources and availability of bud banks and
seedbeds. Land managers require spatial burn severityodatntge podire risks, ecosystem
recovery, and assess the outcomes of fires. This research seeks to characterize and explain
variability in burn severity in the northwestern boreal forest. We assessed burn severity one year
pos#ire in six large wildfres that burned in 2014. We measured burn severity using the
Composite Burn Index, surface Burn Severity Index, Canopy Fire Severity Index, and percent
overstory mortality, describing a range of surface and overstory fire effects. Burn severity was
variabk, ranging from unburned residuals to complete overstory mortality and intense
combustion. We related field measurements to remotely sensed multispectral burn severity
metrics of the differenced Normalized Burn Ratio (ANBR), the Relativized dNBR, and the
Relativized Burn Ratio. Diagnostic models of burn severity using relativized metrics had lower
errors and better (though not significantly so) fits to the field data. Spatial patterns of burn
severity were consistent with those observed in other largarfifésrth America. Stand

replacing patches were large, aggregated, and covered the largest proportion of the landscape.
These patterns were not consistent across the four mapped burn severity field metrics, suggesting
such metrics may be viewed as relatad, complementary, as they depict different aspects of
severity. Prognostic models indicated burn severity was explained Kyepséand structure and
composition, topoedaphic context, and fire weather at time of burning. Wetlands burned less
severelyhan uplands, and open stands with high basal areas experienced lower burn severity in
upland vegetation communities. This research offers an enhanced understanding of the

relationship between ground observations and remotely sensed severity metrigsinotioon
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with standlevel drivers of burn severity. The diverse fuel complexes and extreme fire weather
during the 2014 fire season produced the complex patterns and broad range of burn severity

observed.

2.2 Introduction

The boreal forest is the largest biemn Canada, extending from west to east, and as far north as
the Arctic coast. Wildfire is the primary stadehewing disturbance in the boreal forg&tiocks

et al., 2002)and such disturbances can determine forest succession and stand composition
(Webe & Stocks, 1998)posHire site productivity(Amiro et al, 2000) and may temporarily
convert forested lands from carbon sinks to carbon sources, thus driving the regional carbon
balancgBond-Lambertyet al, 2007; Goodale et al., 201&lthough the ire regime of the

North American boreal forest is regularly characterized as one ditghsity, higlanortality

crown fire(Johnson, 1992}here is substantial variability in burn severity (changes to vegetation
and soils from fire), ranging fromnburned residuals and areas of Amwrtality surface fire to

highly charred and combusted areas with complete apawend mortalityKafkaet al, 2001;
Stocks et al., 2001)

Land managers in the boreal forest region require information about burrtysérediverse
purposes with different temporal scales, from managingderng posfire recovery of
ecosystems to addressing more immediate hazards and outcomes resulting from wildfire. For
example, locating areas of higlkverity burned sites containingprtality of overstory trees from
fire is relevant to salvage loggiri@reeneet al, 2013) whereas the severity of the consumption
of the surface organic layer and presence of exposed mineral soil may be more relevant to
understory vegetation communitevelopmen{Wang & Kemball, 2005and erosion risk
managementRobichaudet al, 2000) Wildfire impacts to both the overstory and the surface are
relevant to podlire recruitment potentiglLentile et al., 2007and estimating ecological effects
on forest communitiegGreeneet al, 2004; Greene et al., 1999; Turretral.1999) wildlife
habitat(Bondet al, 2009; Koivula & Schmiegelow, 20Q74gentifying fire refugia and unburned
islands(Kolden et al. 2012; Krawchuk et al., 201,6and estimating cobustion for carbon

accountingKurz et al., 2009; Veraverbelet al, 2015) Spatial burn severity data are also

18



applied for wildfire management uses, as they allow managers to engage in highly detailed
mapping of fire perimeter@&ansaset al, 2016; Kolan et al., 2012)and to assess the role of

fuel treatments and prescribed burning in redudiryglersen et al., 2017; Parksal, 2014,

Prichard & Kennedy, 2014y promoting(Harvey et al.2016a)subsequent fire intensity and
severity througlaltering fuel loads or padire stand structure. Depending on the wildfire effect

of interest, managers may require information about overstory mortality, combustion, or a
combination of the two. Due to the diversity of management uses for severitgndatafield

metrics have been developed to measure burn severity. Percent overstory mortality measures
mature tree survival following fire, whereas the Composite Burn I(@Bx Key & Benson,

2006)is a generalized measure of burn severity, mortality cantbustion across all strata of
forest stands. Other metrics of burn severity aim to measure only combustion of the overstory or

soil surface.

The use of multispectral remotely sensed burn severity metrics is widespread across North
American forests, buhe relationships of such metrics to ground observations of burn severity
are variable, especially in the boreal forgsench et al., 2008 he differenced Normalized

Burn Ratio(dNBR; Key & Benson, 2006)as developed to assess changes in reflectance of
healthy vegetation, soils, and soil moisture due to fire. Subsequently, Miller and (BOOd@®
adapted this metric to better capture change relative Eirpreonditions, with the Relativized
dNBR (RANBR). Most recently, Parks et @0141) introduceda newer relativized severity
metric, the Relativized Burn Ratio (RBR), which remains unassessed in the boreal region.
Researchers have primarily assessed burn severity in the boreal forest using CBI, which has
demonstrated inconsistent relationships teepbed severity in the boreal forest, and studies
examining other burn severity metrics such as percent overstory mortality and surface burn

severity are limitedFrench et al., 2008)

Relationships between field measurements of burn severity and reseteld severity metrics
are used to produce maps of burn sevékigy & Benson, 2006; Morgan et al., 2018patial
patterns of burn severity can have ldagting ecological effects on the composition and
structure of forests that regenerate following fdohnstone & Chapin lll, 2@). Varying

overstory burn severity (ecological impacts on large trees from fire) and surface burn severity

(combustion of organic soils, and ecological impacts on understory vegetation) have important
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direct effects on poZtre forest recovery in the boreal biome. The relative availability and depth
of seedbeds (mineral vs. organic soil), and fire intensity and overstory mortality affect seedling
recruitment in a manner that can potentially lead to shifts in stand compd@ddimstone &

Chapin Ill, 2006a; Lavoie & Sirois, 1998)he mosaic of burn severity within a fire also
influences landscape heterogeneity and gegeddistributions, with implications for both

species assemblies and diverg¢@hipman & Johnson, 2002gWs et al., 2004)and the

flammability of posHire landscapes due to fuel continu{Barkset al, 2012; Turner & Romme,
1994) Quantifying the relative performance of remotely sensed burn severity metrics in
describing diverse field measurementd®oin severity will provide insight into the utility and
application of multispectral imagery for estimating and mapping meaningful burn severity in the
northwestern boreal forest and allow a broader characterization of landscape patterns of burn

severity n this region.

In ecosystems dominated by tree species that require live trees for seed souéesofiaus),
landscape patterns of overstory mortality are important tafpestegetation recovery due to

limits of seed dispers&Collins et al., 201} Analyses of the landscape pattern of sfand

replacing fire in such ecosystems show that large fires, like those characteristic of the boreal
forest fire regime, tend to incorporate moderately high proportions burned severedg) &t

that standeplacing patches are often large, simple in form with substantial core areas, and
aggregated, with some variability driven by local climate and veget@amsler & Mckenzie,

2014; Harveyet al, 2016b) It is therefore possible to characterize the landspafierns of

diverse overstory and understory burn severity metrics in the northwestern boreal forest, relative
to documented patterns of stamgglacing fire in thigFerster et al., 2016; Kafka et al., 20@hy

other ecosystemEansler & Mckenzie, 2014 ollins et al., 2017; Harvey et al., 2016b) the

boreal forest, however, many tree species have adaptations that provide in situ budding rhizomes
or seed sources following fire, regardless of tree mort@itgene et al., 19998uggesting that
ecologcal characterizations of landscape patterns of burn severity in this region should address

other fire effects, in addition to overstory mortaliBergeroret al, 2014)

Climate acts as a significant @lown control on fire activity and area burned,ihg\a direct
effect on fire size. Large fires have larger areas of dapldcing fire that are simpler in shape

than smaller fire¢Cansler & Mckenzie, 2014; Harvey et al., 201@)rn severity is also a
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product of both pr#ire vegetationBoucher et i, 2016; Collinset al, 2007)and topography

(Dillon et al., 2011; Krawchuk et al., 201&yhich provide bottoip controls on wildfire. Fire
weather at the time of burning influences fire behavior and combystwastry Canada Fire
Danger GrougFCFDGQ), 1992) and in westentral North America, researchers have
demonstrated that extreme fire weather may overwhelm the effects of Rgitoamtrols on

burn severityDillon et al., 2011; Harvegt al, 2014; Krawchuk et al., 2016)inkages between

fire weather, fuel structure, and burn severity have been identified for the forests of the western
United StategLydersen et al., 2017; Prichard & Kennedy, 20Db4i they remain sparsely
documented in northern forests. An enhancecerstdnding of tofiiown and detailed bottadinp
controls on burn severity in the northwestern boreal forest would offer insights for fuel and fire

management in this figgrone region.

The goal of this research is to describe and explain variability indawerity in the

northwestern boreal forest. Our objectives were to (1) assess the performance of three remotely
sensed burn severity metrics in characterizing field observations of burn severity from the
northwestern boreal forest, (2) contextualize arstidiee the landscape patterns of burn severity

in the sampled fires, and (3) characterize the relative importanceAbovap (daily fire weather)

and bottordip (topography and vegetation structure) controls on burn severity in an extreme fire

year. Hypotleses related to each objective are reported in Rable
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Table2.1 Research objectives and hypotheses, and associated supporting literature used in hypothesis development.

Supporting
References
1) Assess the performance of H1,: Bivariate relationships between the four fie (Miller et al.,
three remotely sensed burn  metrics of burn severity arreémotely sensed burn 2009)
severity metrics in severity will have different forms.

characterizing field

observations of burn severity

from the northwestern boreal

Objective Hypothesis

forest
H1,: Relativized metrics of burn severity (RBR, (Cansler &
RANBR) will have a significantly stronger McKenzie,
relationship to field metrics of burn severity thar 2012; Hoy et
nonrelativized metrics (ANBR). al., 2008;
Parks, Dillon,
et al., 2014)
2) Contextualize and describe H2,: Greater than 25% of the area burned in the (Cansler &
the landscape patterns of burn sampled wildfires will have burned at high Mckenzie,

severity in the sampled fires  severity, reflecting the large fire sizes and stanc 2014; Collins
replacing fire regime of the northwestern boreal et al., 2017,

forest. Harvey et al.,
2016b)
H2,: High-severity patches will have larger (Cansler &

average sizes, larger careas and less complex Mckenzie,
patch shapes than unchanged, low, and moder: 2014; Collins
severity burned patches, reflecting the large siz: et al., 200,
of the sampled fires and stareplacing fire Harvey et al.,
regime of the northwestern boreal forest. 2016hb)

H2.: Landscape patterns of burn severity will va (Miller et al.,
with the different modeled burn severity field 2009)
metrics.
3) Characterize the relative H3,: Burn severity is significantly related to (Dillon et al.,
importance of togown (daily  topoedaphic context, pfee vegetation, and fire 2011; Harvey
fire weather) and bottomup  weather at the time of burning in the northweste et al., 2016b;

(topographical and vegetation boreal forest. Prichard &
structure) controls on burn Kennedy,
severity in an extreme fire yea 2014)
H3,: During the extreme fire year of 2014, top  (Dillon et al.,
down controls of daily fire weather were of 2011; Harvey

dominant importance to burn severity, due to th et al., 2014;
Afover whel mingd of ot h Krawchuk et
weather. al., 2016)

2.3 Methods and Data
We measured p#re stand structure and burn severity metrics one yeafpestnd developed

bivariate models of field observations and remotely sensed burn severity metrics, linking satellite
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imaging of fire effects to ground observations of gostenvironments. These relationships

were used to create maps of burn seventych we analyzed with landscape patch metrics.
Finally, we fit models explaining burn severity field metrics from measured stand structure,
topoedaphic context, and daily fire weather at the time of burning. All analyses were performed
in R (R Core Team2018) unless otherwise specified.

2.3.1 Study area

The six studied wildfires were very large (~14,000 608,000 ha), lightninggaused fires that
burned in 2014 within the Northwest Territoriesdood Buffalo National Park (Fi@.1). The
study areaxperiences infrequent, stateplacing (i.e., lethal) fires every 4860 yr(Boulanger

et al., 2012)Although fires in this region are typically smallZ80ha), rare large fires, such as
those studied here, are responsible for the vast majority af¢lacburnedStocks et al., 2002)
2014 was an extreme fire year in this region, which took place during &maitdrought
(Northwest Territories Environment and Natural Resoufd®8TENR), 2015) Due to the
dispersed and small human population in #nes, naturally occurring wildfires are generally
managed following an appropriate response philosophy, with limited suppression and control
efforts, where acceptable. For these reasons, the fires sampled for this study presented a rare
opportunity to stud burn severity in multiple concurrent, large, ftm&rning wildfires, in a

broad range of fuel complexes.

The study area is characterized by long, cold winters and short hot summers, with mean annual
temperatures betwe&n43 °C (in the north) and 18 °C (in the south). It generally receives Idw
toAnoderate annual precipitation, ranging from approximately 300 to 360 mm, primarily in the
summer monthéEcological Stratification Working Group (ESWG), 1995; Wanal, 2012) In

the western part of the study area, glacial deposits have produced a flat to undulating plain. To
the northeast of Great Slave Lake, bedrock lies closer to the surface, and the terrain becomes
rolling granitic hills on the Canadian ShidESWG, 1995)Peatlands are a substantial

component of the entire study area, covering roughly a third of the area, but locally as much as
751 100% of the land's surface, with a higher cover of peatlands west and south of the Great
Slave LakgTarnocai et al., 2011Pue to the glacial history of this region, there is minimal
topography, and surficial geology and soils may contribute more meaningfully to hydraulic

gradients than topography in the boreal p(&@mpvito et al., 2005)The study area is within the
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disconthuous and sporadic permafrost zones of northern CdNadiaral Resources Canada

(NRCan) 1993) No field sites had an active permafrost layer in the top 1 m of soil.
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Figure2.1 The study area (extent indited in black on inset map), located in context within North America. Dark
orange areas indicate perimeters of sampled 2014 wildfires, and lighter orange areas are other 2014
wildfires. Sampled fires are labeled in red with the fire name. The 51 burngdesifield plots and 12
unburned control points are identified with blue circles. Detailed descriptions of fires and distribution of
sample plots by fire are included in Table 2.2.

The dominant tree species in this region are black spRiceg mariang, jack pine Pinus
banskiang, white spruceRicea glaucy and trembling aspef®¢pulus tremuloidgs Secondary
species of eastern larchafix laricina), balsam poplaRopulus balsamifefaand paper birch
(Betula papyriferga are also common. Many of tleesee species are adapted to recurrent
wildfires and have serotinous or s&sairotinous cones, or sucker from roots and rhizomes
following fire (ESWG, 1995; Greene et al.,

seed sources following firelass significant driver of padire seedling recruitment for many

199%hese characteristics make distances to live
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species, with the exception of white spruce, which requires live trees for regeneratime. Pre

organic soil depths range from gbbentimeter depths in xeric pine stands to meters irfguest

2.3.2 Field site selection and sampling

Sampling of préire stand structure and pdste burn severity took place one year [Zs.

Proposed field sites were located in areds®0 m 2 &m fcbm @ads, with a stratified

random sample of burn seutgr evenly distributed across I@unoderatg and higzburn

severity classes produced from initial assessment dNBR infldggs& Benson, 2006¢lassified

using thresholds reported in Hall et@008) When traveling by helicopter, additional remote

field sites were selected to represent the local range of burn severity and vegetation communities
accessible from the landing site. We sampled 51 burned field sites and located twelve unburned
control points, which we used to identify remotely sensed bwerisg and reflectance values of
unburned areas. The range of vegetation communities sampled in the burned plots was
represented in the sample of unburned controls. At field sites, we placed plot centers randomly
within a homogenous area of burn sevenggetation community, and topoedaphic setting

(upl and or wet |68 miéhny tirecidn freenthe plot ceetet. PIGt locations

were recorded with a differential GPS unit. Plot centers of all field sites were a minimum of 103

m apart, but weren average 170 km apart.

Field sites were 30 x 30 m square plots, oriented so that tfo tB@nsects aligned with the

cardinal directions crossed at the plot center at right angles. The vegetation community and
topoedaphic context (upland or wetland s)asf a plot were described according to the Field
Guide to Ecosites of Northern Albelfdeckingham & Archibald, 1996 cosites were

generalized into five functional vegetation community classes: Upland Jack Pine, Upland Black

Spruce, Upland Mixedwood réed Wetland, and Open Wetland.

We described burn severity in each plot using percent overstory mortality, CBI with height
thresholds modified for northern foregkeey & Benson, 2006; Verbylat al, 2008) Canopy

Fire Severity IndeXCFSI; Kasischket al, 2000) and Burn Severity IndefBSI; Lobodaet al,
2013) Composite Burn Index values ranging from 0 (unburned) to 3 (severely burned) were
estimated for each forest stratum present in the 30 x 30 m plot and averaged. Canopy Fire
Severity Index was used to estimate the level of crown involvement in fire and intensity of

overstory combustion, whereas BSI was used to assess the burn severity of the forest floor and
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ground surface. We estimated the relative area of the seven CFSI classes, ramgih(hiydree
mortality) to 6 (no primary branches remaining, pole charring occurred) in four 10 x 10 m
subplots, at the four corners of the plot. In the same four subplots, we also estimated the relative
area of five surface BSI classes described in Dgraesl Norun{1983)ranging from O

(unburned) to 4 (organic soil ashed, mineral soil exposed). The area of each class was used to
calculate weighted sums following the method described in Loboda(2048) and the

resulting four CFSI and BSI values ot were averaged. Percent overstory mortality (MORT)
from fire, predire overstory tree species composition, stem density (dtehjstree basal area

(BA; m* hd ), and estimated pZfire live conifer crown base height (CBH; m) were measured

for 32 trees >3 cm in diameter at breast height with the p@ientered quarter meth@@ottam

et al, 1953; Mitchell, 2015at eight evenly spaced points along the two transects. Where stem
density was very low (i.e., open wetlands), a variable radius circlevgglho minimum length of

15m was taken at the plot center to measure overstory treérePnaderstory stem density of
seedlings and saplings was measured usimgr&dius plots at the end points of each transect.

The number of understory density pletampled ranged from one to four, depending on the

density and evenness of the seedling and saplings. Understory and overstory stem density were
combined for analyses. Hfiee overstory fuel load (flammable biomass imd ) at each site was
modeled usig allometric equationfThompson et al., 2017; Ured al, 2008) Sections from
fireAcarred trees were collected to determine stand age and fire history at each plot. If no scarred

trees were identified nearby, a section of a mature dominant tree wesexbll

2.3.3 Remote sensing of burn severity

Remotely sensed burn severity within the six fires was estimated using multispectral Landsat 8
OLI (Operational Land Imager) and Landsaf® (Thematic Mapper) images (Landsat L&fel
imagery, courtesy of the U.Seological Survey). Image pairs were selected for an extended
assessment of burn severity, where fivstimages were captured in the growing season after

the fire(Table 2.2Key & Benson, 2006)images were converted td&airface reflectance using
darkbbjectubtraction in QGIS with the sedutomatic classification plugifCongedo, 2016;

QGIS Development Team, 201 Qlouded and shadowed areas within fire perimeters were
masked by hand in ArcGI@&sri Inc., 2012)and permanent waterbodi@éRCan, 208) were

also masked. The Normalized Burn Ratio (NBR; Eq. 1), dNBR (Eg. 2), RANBR (Eq. 3), and
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RBR (Eq. 4) were calculated fromZtrface reflectance of némfrared (NIR) and shafivave
infrared (SWIR; Landsat bands 4 and 7 [TM] or 5 and 7 [OLI]) and theltiplied by 1000. All
remotely sensed burn severity metrics were calculated in R with the raster pgtikages,

2016) We included an offset term (dNBRe), normalizing dNBR values in unburned areas to 0
by subtracting the average dNBR in unburaeeas to account for phenological differences
between imageEq. 2; Key, 2006; Miller & Thode, 200.7Yalues of the remotely sensed burn
severity metrics at each field plot were estimated from the four nearest 30 x 30 m pixels using

bilinear interpolatn.

1)
56y 0 OYD OY
VoY FoYes oy
(2)
QOUOY 0UO'Y 00'Y Q0 O'Y
3)
QU O'Y
YQU oY 3
00'Y
(4)
o Q0O'Y
YOV ——
vo'Y pat T p

28



Table2.2 Pairs of Landsat-®LI and Landsat-8M images used for measurement of remotely sensed burn severity. Images are listed by the name of the fire
analyzed. The size and start date of sampled wildfires areegiected, as well as the number of field plots located within the fire. Twefippsinages
for fire 2014ZF017 were mosaicked together.

Fire Name gﬁg (Frilraes Size lc\)lfufri?albder g;er;ngf Path Row :Dnzz_gg%ate ggzgl;irre Path Row mz;gire
plots Date
2014ZF020 %‘Srl‘i 17, 730,855 12 gf"cr)‘lc_’lsat 48 17 g"oalyg?’o’ (L;I‘_rlldsat 8 48 17 g/loalySZO,
2014ZF017 o0 % 450207 5 gf"‘onlc_’lsat 5 16 otz g’l‘_’:dsat ® a4 16 02
2014ZF017 - - - - ; ] ] g:ll_f:dsat 8 41 16 ;tarllg 25,
201477046 07> 106485 17 Landsat 4g 1 ey pandsats gy ge May 29
2014wB028 SO0 66673 8 Landsat 45 1 gonedd andsatd ye gg JURe2S
2014WB002 010 T 38060 6 Lonesdt 44 g Junedd andsatd oy, gy JURe2S
2014wB020 oY% 13979 3 candsal 44 g guneld pandsat® gy, 4g  JURe2S
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2.3.4 Dally fire weather

To assess the potential relationship between weather and burn severity, we interpolated Moderate
Resolution Imaging Spectroradiome(dtODIS; Canadian Forest Service, 2086y Visible

Infrared Imaging Radiometer SuiféllRS; USDA Forest Service, 2014ptspotdfrom the year
2014, using a weighted me@parks, 2014)o estimate the day of burning (DOB) for each field
site. Fire weather conditions were represented using the Canadian Forest Fire Weather Index
(FWI) System, which uses daily inputs of temrgiare, relative humidity, precipitation, and wind
speed to produce three fuel moisture codes (Fine Fuel Moisture Code [FFMC], Duff Moisture
Code [DMC], and Drought Code [DC]) and three indexes of fire behavior potential (Initial
Spread Index [ISI], Buildp Index [BUI], and Fire Weather Index; Van Wagner 1987). Noon
(Local Standard Time) weather and FWI System values on the DOB for each site were
downscaled from North American Regional Reanalysis @drRR; Jain et al., 2017; Mesinger

et al., 2006using adinary kriging. Fire Weather Index System indexes were calculated from the
interpolated temperature, precipitation, relative humidity, and wind speed using the cffdrs
packaggWang, Wotton, et al., 201,Ayith starting values from the interpolated valoéthe

FFMC, DMC, and DC from the previous d@lain et al., 2017)

2.3.5 Analysis
Statistical differences in burn severity and stand structure between vegetation communities were
assessed with Wilcoxon sigrigahnk tests, ANOVA, and post hoc legsfuares means tests
(Ismears package; Lenth, 2016)Ve produced scatterplots and computed Spearman'’s rank
correlation coefficients to determine the nature of the relationships between the field measures of
burn severity and remotely sensed burn severityiose Subsequently, we used generalized
linear models (GLMs) and landscape patch metrics to examine landscape patterns and drivers of
burn severity in this region. Bivariate GLMs were used to develop diagnostic models describing
the relationship betweeemotely sensed burn severity and field metrics of burn severity. All
model fits were assessed using averages afneat¥quare error andRthe square of the
correlation between observed values and predicted values), calculated followigjcd dOsZ,
validation (CV) with 100 repeats in the caret pack@dein, 2017) All statistical tests in this
study were conducted at thé®level of significance. Continuous values of the four burn
severity field metrics were predicted from rasters of remotelyeselmsrn severity using the
bivariate GLMs and subsequently classified into unchanged, low, moderate, and high severity
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using breaks described in Tald8. The relative quality of each remotely sensed burn severity
metric as a classifier of burn severitgsvassessed using the kappa statistic in the psych package
(Revelle, 2017)

Burn severity thresholds were identified from field observations of meaningful differences in

burn severity for each metric and validated with the distribution of sampled3atarally,

unchanged sites are unburned or lightly burned, where mild and patchy fire effects were

intermingled with unburned areas. Lé®&verity burned areas had scorched or lightly charred

surfaces but substantial organic matter still existedfrestSome overstory mortality may be

evident in the stand, but any crown involvement in the fire did not consume all small branches in

the overstory. Moderafgeverity burned areas have charred surfaces and may have some

exposed mineral soil and ash presentei@tory tree mortality was more common in these

stands, with primary branches and some deadnarbusted foliage remaining on the trees

despite fire crowning. Higieverity burned stands have surfaces substantially composed of

exposed mineral soil or ashhere was complete stand mortality, and the majority of primary

branches are consumed (illustrative photographs provided in App&ndixbleA1). Models

using relativized burn severity metrics generally had lower error and highef @alURs than

modelsusing dNBR to describe burn severity field metrics; however, all bivariate models were
significantpO 0. 001) and none had statisticalZy stro
rank tests of model residugi® 0. 44) . Fur t h enfideoceiptervalbatheause t he
kappa statistic for all three remotely sensed metrics overlapped, we chose to present only RBR in

subsequent analyses and visualizations.

Table2.3 Breaks used to classify maps of neéetl burn severity field metrics of Composite Burn Index (CBI),
surface Burn Severity Index (BSI), Canopy Fire Severity Index (CFSI) and percent overstory mortality
(MORT). Modeled values of burn severity metrics were estimated from raster maps of ttelyeemased
Relativized Burn Ratio (RBR). Representative photographs of burn severity classes are included in
AppendixA: TableA2.

Burn Severity Metric Unchanged Low Moderate  High
CBI (0i 3) 00.1 >0.171 1.5 >157 225 >225
BSI (Gi 4) 005 >057175 >17513 >3
CFSI (0 6) 00.1 >0.171 2 >2i 4 >4
MORT (Gi 100) 010 >107150 >50795 >95
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Landscape patterns of classified burn severity within fire perimeters were assessed using a
selection of patch metrics calculated in FRAGSTAWBGarigalet al, 2012) Patches were

defined using the eighteighbor rule. To limit edge effects, landscape patterns of burn severity
were assessed within the core al0erafromthefra r e pe
edge(following Parkset al, 2014). Singlepixel patches were removed using a majority filter in
ArcGIS, also with an eigleighbor rule. Patch metrics were selected to characterize the relative
dominance, and spatial arrangement and distribution of patches of each stassitfhe area
weighted mean patch size and the proportion of the landscape burned in each severity class were
used to describe the relative dominance of severity classes on the landscafeeidineézd

means were used as they capture the higher refamability of a randomly selected point
falling into a | arge patch. The0oncfromtheedge.ea of
This threshold was selected as a conservative estimate of the maximum distancefor long
distance seed dispersal fonie spruc€Greene & Johnson, 20Q0h an ecosystem where most

trees have in situ bud banks or seed sources, regardless of overstory mortality. The clumpiness
index and aregveighted perimetéfozrea ratio (PARA) were selected to characterize how

patche are arranged on the landscapes, capturing the relative dispersion and complexity of shape
of the different severity classes. Clumpiness is the deviation in the proportion of like adjacencies
(pixel edges shared with a pixel of the same class) fromxpatted in a random landscape.
Together, these metrics were used to characterize théinegsattern of combustion, seedbeds,

and seed sources, and the heterogeneity of th&ippkindscape mosaic.

We also fit prognostic multivariable GLMs to estimhten severity field metrics from pfige

stand structure, topoedaphic context, and fire weather. A complete suite of stand structure and

age, and fire weather variables were considered for each model. Only those explanatory variables
that were significan(pO 0. 05) were retained. | f explanator
O 0.6) with one another, then the variable co
retained and the other correlated variable was removed. Upland and wetland datasets wer

separated and differences in model performance and in burn severity between the two groups

were assessed. Finally, the three remotely sensed burn severity metrics were assessed for
complementarity to the field data by adding each to the complete primgmostivariable model

and examining model fit metrics abffalues of predictor variables.
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2.4 Results

2.4.1 Field measures of burn severity

The CBI, BSI, CFSI, and percent or proportion overstory mortality (MORT) field measures of
burn severity were sensitive toeire vegetation communities described by dominant upland

tree species, and treed or open wetlands gR2y. Of the vegetation communities, Upland Jack

Pine tended to incur the higher ranges of burn severities. Burn severity was most variable in
UplandMixedwood stands, which is likely attributable to the variable proportions of conifer and
deciduous species that would influence fuels and the likelihood to burn. Not unexpectedly, Open

Wetlands had lower values of burn severity compared to Treed We(kigd2.2).

Of interest was the degree to which remotely sensed burn severity metrics were statistically
correlated to the four burn severity metrics. Both dNBR and RBR were most highly correlated to
CFSI, followed by CBI. Relativized dNBR was more cated to CBI than CFSI. All three

remotely sensed metrics were less correlated with BSI than CBI and CFSI, and had the weakest
correlation to MORT; however, all correlations were statistically signifigart@.001;

AppendixA: TableA2). These correlatianwere supported by the scatterplots of the data points
between the remotely sensed metrics and the four field burn severity metrics. In particular, there
was a distinct sigmoidal relationship between the remotely sensed severity metrics and MORT,

which exlains the lower correlation coefficient (F&)3).
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Figure2.2 Distribution of burn severity metrics within vegetation communities of Upland Black Spruce (BS),
Upland Jack Pine (JP), Upland Mixedwood (MW), Treed Wetland (TW), and Open Wetland (OW). Burn
severity metrics are: a) Composite Burn Index (CBI), b) suBace Severity Index (BSI), ¢) Canopy Fire
Severity Index (CFSI), and d) percent overstory mortality. CFSI and Percent overstory mortality are not
reported for OWs as these are not forested systems. Letters above each boxplot indicate significant
differencs O 0 . 0 5 *-3quares means with & Tukpyvalue adjustment.

34



Figure2.3 Relationships between a) Composite Burn Index (CBI), b) surface Burn Severity Index (BSI), ¢) Canopy
Fire Severity Index (CFSI), and d) percent overstory mortality (MORT) and the Relativized Burn Ratio
(RBR) across all vegetation communities (indicategdint color and shape). Open wetlands are excluded
from the CFSI and MORT models as these are not forested systems. Unburned control sites are classified
into the same vegetation communities, and are identifiable as points with values of zero. Mtadisttifiiss
are reported in Table 2.4, as are models of the same form with independent variables of the differenced
Normalized Burn Ratio (ANBR) and Relativized dNBR (RANBR).

2.4.2 Diagnostic models of burn severity

Burn severity was statistically lower in wetlanihan in uplands (Wilcoxon sigrigank testp O

0.02) when measured by CBI, and BSI, but not when using the overstory burn severity measures
of CFSland MORTEO 0 . 2 B2). Céiripasite Burn Index, CFSI, and BSI were explained

by predire vegetation communities (Type Il ANOVA,< 0.003); however, MORT was not
statistically related to vegetation community=0.5). Vegetation community classes alone
explained 22.686 (CFSI), 41.%% (CBI), and54.% ( BS1 ) of ?Jihfeldvari ance
measurements of burn severity. Post hoc comparisons dshpsates means with a Tukey

value adjustment confirmed some statistical differences in burn severity among vegetation
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